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ABSTRACT

A polynomial f(z) of even order n can be written either in sum-
mation form with real coefficients Ao’ Al’ cees An, or in product
form where the factors are quadratic polynomials in z. The coeffi-
cients of the factor polynomials are Y, associated with zl, and X,
associated with z°, A comparison of the coefficients in both forms
yields systems of equations that can be systematically ordered.
When X, is replaced by x, and Y, by y, a Z matrix can be recognized
as the essential part of one of the systems. Based on fundamental
theorems of algebra, the Z matrix has been developed for
polynomials of orders 2, 4, and 6.

The Z matrix of order n has a strong internal construction.

Its relationship to matrices of the adjacent orders n+2 is such that
it can be obtained in ascending or descending sequence. The ele-
ments of the Z matrix are simultaneous polynomials in x and y.
The Y matrix can be derived from a comparison of the coefficients
or from the Z matrix. The elements of the Y matrix are polynomials
in x only. The elements of the main diagonal of the Y matrix

and the elements in the upper parallel to the diagonal can be obtained
from the coefficients of f(x). A process of iterative differentiation
yields the elements below the main diagonal; a process of iterative
integration yields the elements above the upper parallel to the

main diagonal. The Z matrix and Y matrix are thus known and

can be computed for a polynomial of any even order with real

coefficients. Properties and characteristics of the Z matrix and the

Y matrix have been compiled in 12 theorems. Aoccession For
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PREFACE

In the course of elaborating methods for finding the roots of
polynomials with real coefficients, a comparison of the coefficients
has disclosed some striking properties in certain systems of equations.
It seems worthwhile to summarize these properties in a separate
report. A careful search of the literature has not disclosed any
previous publication of similar nature, which should justify pre-
sentation of this data as 'theorems.! The author will be happy
to receive comments on the adequacy of his literature sources
and citations.
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ON TWO MATRIX SYSTEMS DERIVED FROM A POLYNOMIAL
OF EVEN ORDER WITH REAL COEFFICIENTS

1. INTRODUCTION

The function

n
- k _ n n-1 n-2
f(z)-g:t(_)Akz =A z +A _z + A .z ...

2

L+ A,z Az + A (i.1a)

is a polynomial in z. Its order is n and, for our discussion,

the coefficients Ak represent real numbers, either positive or

negative. The subscript k is identical with the exponent k of the
power z k that is associated with the coefficient. The coefficient An
is assumed to be = 1. All polynomials will be understood as though
written in the expanded form of Eq. (1. 1a).

For reasons that will be explained immediately, we will deal
only with polynomials of even order n. Thus, throughout the dis-

cussion n is an even integer. The polynomial equation

f(z) =0 (1.2)

has n simple roots. Let us postulate intermediately that all the n/2
roots in Eq. (1.2) are conjugate complex pairs. Then

n/2
£(z) = ‘ﬁ (2% +y, 2+ %) (1. 1b)
v=1

Received for publication August 1, 1961.
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is an alternative form of Eq. (1. 1a). Each factor 22+ y, 2+ X%, in Eq.

(1. 1b) represents one of the n/Z pairs of conjugate complex zeros

Z,=a, iJﬁv, {1.3)

where
- . 1

O.v = zyv, (1.32)

B =3 [4x —yz. (1. 3b)

v 2 v v’ c U=
and

v =12, ..n/2 (1.3c)

The coefficients ¥, and X, in Eq. (1. 1b) represent real numbers.
All X are positive. The y, may be positive or negative, depending
on whether the corresponding pair of conjugate complex zeros is

in the left or right half of the complex z plane. If f(z) has only
conjugate complex roots, then the coefficient A in Eq. (1.1a) is
positive,

If f(z) has only conjugate complex roots, it may be considered
as the residual polynomial of a polynomial F(z) of order N (N being
an even or odd integer) from which all the N-n real roots have
been removed. By Sturm‘s1 method we can find out if a polynomial
has real roots and discover their approximate location. A very
rough indication suffices as a start toward obtaining more accurate
values by working out some real z values. Horner's2 method is
then used to find the real roots, within any desired accuracy. Re-
moving these roots leaves a polynomial of order n that has only
conjugate complex roots.

Schematic procedures for both Sturm's and Horner's methods
are described by Willers, 3 as well as in a report now in preparation
by the present author. The problem of root-finding will not be
further discussed in this paper. What has been given here should be
enough to show justification for dealing with polynomials of even
order only. There is no necessity to postulate that the even~order

polynomials under discussion have conjugate complex roots only.




2. COEFFICIENT COMPARISONS

From Egs. (1. 1a) and (1. 1b),

n Kk n/2 9
> Azt = (z%+y z+x ), (2.1)
k=G v=1 v

with An = 1, After the multiplication on the right side of this equation
is carried out, we compare the coefficients that are associated with

the same power z k on both sides of the equation. The result is the

following \
A = comb0 y. =1
n v
_ 1
An-l = comb Y, . o
An-2 = comb. y, * comb1 . comb1 Y, ;(2.2)
A = comb” y_ + comb - comb” y
n-3 v Xy v
_ 4 1 2 2 0
An—4 =comb "y + comb - comb 'y + comb X, - comb "y
A = comb5 v+ comb1 . comb3 y. + comb2 X -comb’y
n-5 v v v v

7

In these formulas comb2 Y, for instance, represents the sum
of all second-order products ¥1¥9 Y1¥3s Yo¥g3s etc etc., taken from the
set of (n/2)y , omitting repet1t1ve indices such as Y11 OF ¥9¥o-
Similarly, comb X, comb v, represents the sum of all products
X1¥q, X1¥3, X9¥ys Xg¥3, etc., taken from the set of (n/2)xv and
n/ ayv, excluding such combinations as X1¥q OF X5¥5. A combina-
tion comb0 is defined as = 1.

Equations (2. 2) show the systematic development of the sequence

of coefficients An’ A There is no disturbance in this sys-

n_l, ees o
tematic structure until we have passed the coefficient A n/2° For

the coefficient A(n-2)/2’ the first element in the sum corresponding
to those in Eqs. 2.2 would be comb(n 2)/2yv. For this combination,
however, the only elements available are (n/2)yv. This kind of

0 = An -n’ /2
especially, only one combination is possible, and that is comb™

combination is therefore = 0. For the coefficient A

comboy + comb” /2 .
v %y




Let us explain the development for the sixth-order polynomial
as an example. Here,

6 5 4 3 2
z +A52 +A4z +A3z +A22 +Alz+AO

_ 2 2 2
= (z +y1z+x1)(z +yzz+x2)(z +y32+x3).

From Egs. (2.2),

1

ti

An=A6

- 1.

An—l = A5 comb yv —y1 + y2 + y3
_ _ 2 1 _

Al g = Ay =comb’y +combx =y ¥yt Yy ¥zt ygygt X+ Xyt xg

3 1 1
An_3 comb v, + comb X, comb Y,
= ¥1¥9¥g + X1(¥atyg) + xo(y +yg) + x5(y +yy)-

The coefficient

A = A

n-3 3° As/z’

and since from here on only the thiree elements Yi» Yoo and y3 are
available, we have to watch how we apply Egs. (2.2), In

_ _ 4 I .2 2
Al 4= Agy =comb v, * com> x, - comb y + comb X

the element comb4yv = 0, and thus

Ay =X Yo¥3 + X9¥1¥3 * X3¥ Vg + Xy¥Xg ¥ X X3 + XoXg.
In
5 1 3 2 1
A =A,=comb’y +comb 'x -comb y +comb x .comb 'y,
n-5 1 v v v v Jv

comb5yv = 0 since five elements are not available. But the second
element in the sum also disappears because comb lxv . combsyv is
not possible without repeating an index. (A combination X1Y1Y9Y3

is not allowed.) Thus, only the third term is valid and so
Ay =X Xo¥3 + X Xgyy + XoXgyy.

Finally, since combGyv = 0 and comb4yv = 0,and combzxv . combzyv

is not possible without repeating an index, all that remains is

A0 = X1X2x3'




The coefficients of the polynomials of orders 2, 4, and 6 are

presented in Table 1 for convenience in following the discussion.

3. EQUATIONS DERIVED FROM COEFFICIENT COMPARISONS

3.1 A System of Equations Derived From Comparing Coefficients
of the Fourth-Order Polynomial

We will now perform some very simple algebraic operations
on the polynomial of order 4 with the coefficients listed in Table 1,

We arbitrarily eliminate

Xg = AO/XI (3. 1)

and Yo = A (3.2)

3~ Y1
By substitution we obtain

A

o = X1+ Ag/x, + y (Ag-y)) (3.3)
and
A1 = xl(A3 -yl) + Aoyl/x1 . (3. 4)

Note that the coefficient A1 does not appear in Eq. (3. 3) and that
the coefficient A, does not appear in Eq. (3.4). By other selec-
tions for eliminating X, and Yo and subsequent substitution we

can find an equation in which the coefficient Ao does not appear,
as well as an equation in which all four coefficients Ao through A3
do appear. Each of these equations is a simultaneous polynomial
in x, and Yy

If we eliminate X4 and Y1 instead of x, and Yoo the results will

2
be the same except that the simultaneous polynomials obtained will

be in Xy and Yg- Since the subscripts are after all only indices of
the factors in the sequential product of Eq. (1. 1b), which are

commutative, we may in all cases interchange x, and ¥q with x

1
and y,. We therefore drop the indices 1 and 2 and let

2

X represent x, or X,
1 2

and y represent Y1 OF Yo,

noting that when x stands for x,, then y stands for ¥ and if x
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stands for x,, then y stands for Y- Equations (3. 3) and (3. 4) and

2)
those mentioned in the paragraph following those equations now

read as follows:

-x3A3 +x2yA2 -x(y2-x)A1 +~y(y2-2x)A0 = 0. (3.5a)
-x3 +x2A2 —xyA.1 +(y2-x)A0 = 0. (3. 5b)
-xzy +x2A3 -xA tyAy =20.  (3.5¢)
~x(y%-x) +xyA, -xA, +Aj =0, (3.5d)
-y(y* %) +y A, -yA, +A, =0. (3.5e)

Each of the Egs. (3.5a) to (3.5e) inclusive is a simultaneous poly-

nomial in x and y, involving of course the real solutions x =Xy

and Xx =x,, and y = Y1 and Y=Yo but written without the dis-

2’
tinguishing index.
A closer look at these equations shows that the coefficients A3

through AO have the leading role in this equation system. This

becomes more evident when we represent the simultaneous poly- ’
nomials by Z, using a double integer index ik, with i indicating
the row and k indicating ti.c column in the expressions given in .
Egs. (3.5a) to (3.5¢). We then obtain

Zoo t Z01A3 T Zoghg t ZoaAy + 2y, Ay = 0. (3.6a)

Zio ¥ 2Byt Zyghg t Zyghy H 21 Ap =0, (3.65)

Zog* ZgiBg+ Zgohg + ZosAy + 2y, Ay = 0. (3.6¢)

Zag+ ZgBg ¥ ZggAy + ZggA + Zg, Ay = 0. (3.6d)

Zao* 21yt Zypfg t Zyghy t 2y A 20 (3.6¢)
These equations can be abbreviated by using matrix notation of
the form

[z, A Ja e =12l 4 1A ] 20 (3.6)

The matrix in Eq. (3.6) will be referred to as the Z matrix. Itisa
square matrix of 55 elements (5 rows and 5 columns), ..umbered ’

e ————————————————————————




from Row 0 and Column 0, respectively., The elements of the Z

matrix are simultaneous polynomials in x and y. In its full form

the matrix is:

-

00 701 702 73 704

12712 714

24 | = [_Zik

34

10 711

(3.7)

22 ]4,4.

20 721 23

30 731 732 33

N N N N N
N N N N N
N N N N N
N N N N N
N N N N N

40 741 742 743 T 44

. -~

If we now compare Egs. (3.6a) through (3.6e) with Eqs. (3.5a)
through (3. 53) to identify the elements Zik with the simultaneous

polynormnials, we discover the following significant properties of
the matrix Fik] 4,4"

1) The elements in the main diagonal are all = 0.

Zon =2, 2y =2igya=2,,=0, (3.8)

00 11 22 33 44

2) The elements Zi = Z if (i+k) is odd.

x =" %y

From Egs. (3.8) and (3. 10)
4)

3) The elements Zi if (i+k) is even. (3.10)

o _qyitk
Z. = Zki( 1) .

i (3. 11)

5) The structure in the diagonal direction is such that

ZOl

12
23

z
z
Zgy

N

03
14

N

3

- X ) Z02
" Zyy/x=x 213
= - le/x = -x Z

- Z23/x =+1
- 2.

x(y“-x) Z04
-Z . [x = 2-x

03 J

24 ~

2

= - 202/}{ =
- Zyg/x =

= yy®-2x)
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Thus, generally,

Ziir1)ke1) " Zy % (3.12)

Note that in any three sequential equations in the system Egs.
(3.5a) through (3. 5¢), the third results from operations on the
two preceding it. For instance, if we multiply Eq. (3.5d) by
-y and add the result to Eq. (3.5¢c), we obtain Eq. (3.5e) mul-
tiplied by -x.

6) The structure in the column direction is therefore such that

Zik T Y231+ 1)k T %2+ 2)k (3.13)

It can easily be proved that if the elements in any column or in
any row are known, Eqs. (3. 8) thrai gh (3. 13) will give all the ele-
ments of the Z matrix, Since, for example, Z_ =0 and Z =+1,

nn (n-1)n

the last column is known from Eq. (5. 15).

3.2 A System of Equations Derived From Comparing Coefficients

of the Sixth-Order Polynomial

A procedure of elimination and subsequent substitution can
be performed on the polynomial of order 6 with the coefficients
listed in Table 1, just as in Sec. 3.1 for the polynomial of

order 4. In this case,
x stands for X, Xg, O Xg,
y stands for Y1» Yg9» OF ¥3.

When x represents X1 then y represents ¥y and so on. The

result is the following:

Z.A_] =[z.] .[A ] = 0. (3.14)
[1k6k6,6 ik 6,6 6-—k6

Since the matrix [Zik] represented by this equation has the
6,6
same properties as described by statements (3. 8) through (3. 13),
it is sufficient to present only the elements of row 0 of the Z matrix
derived from the sixth-order polynomial:
5 4 3,.2
Z., =-X Z02=xy ZO3=-x(y-x)

01 . (3.15)

Z

f

xzy(y2-2x) Zys = -x(y4-3xy +x2) Zgyg = y(y4-4xy2+3x2)

04




9
Note, for instance, that 202 in the Z matrix of order 4 is dif-
ferent from Z02 in the Z matrix of order 6, just as A2 in the
polynomial of order 4 is different from A2 in the polynomial of
order 6. So long as we stay within the same order, however,
further distinguishing indices may be omitted.
3.3 The Z Matrix of the Polynomial of Order 2
The equations that can be derived from the polynomial of
order 2 are immediately given by the definition of the coefficients.
They are—a triviality, of course—the following:
-xA1 + yAO = 0. (3.16)
-X + A0 = 0. (3.17)
All three equations are satisfied by x = x4 and y = ¥y since
A0 =Xy and A1 =¥q- The elements of the Z matrix are
A
Zop =211 = %92 =0
Z01 =Z10 = -X; Z02~—Z20 =y t- (3.19)
Zyg=29y =1 ‘

All the statements in Eqs. (3. 8) through (3. 13) are true for this
trivial case also.

For convenient reference, the elements of the Z matrices
of orders 2, 4, and 6 are listed in Table 2.

4, COMPARISON OF THE Z MATRICES OF THE POLYNOMIALS
OF ORDERS 2, 4, AND 6
In Sec. 3 we showed the relationships between elements in the
Z matrices of orders 2, 4, and 6. In each case the matrices had
been derived from a comparison of the polynomial coefficients
according to fundamental theorems of algebra. We will now com-

pare the elements of one of these matrices with the elements of
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the adjacent orders. Let us first compare the matrix [ZHJ
6,6
of order 6 with the matrix [Zk] of order 4. Here we will
4,4

use an additional subscript to indicate the matrix order containing
the element being examined.

The elements of the matrix [Zik] are listed in Table 2,
6,6

If we delete Rows 5 and 6 and Columns 5 and 6 of the matrix

[ZikJ , the residual square matrix contains 5 rows and 5
6,6

columns, Dividing the elements of the residual matrix by x2

For instance,

gives the exact matrix [Zik

4,4
(Zo) =(Zy,) [x°=-x"[xx",

01 01

4 6

2 4 2 2

(Zoz) = (Zoz) /X" = xy/x" =x"y,

4 6

and so on.
We now consider the matrix [Zik] of order 4. If we delete
4,4

Rows 3 and 4 and Columns 3 and 4 of this matrix the residual
square matrix contains 3 rows and 3 columns. Dividing each ele-
ment of the residual matrix by x2 gives the exact elements of

the matrix [Zik] . Thus we find, at least for the order se-
2,2

quence 2, 4, and 6, that the elements of the matrix [Z'k]
n,n
can be obtained from the elements of the matrix [Z.k]
(n+ 2)}(n+2)

by deleting the last two rows and the last two columns of the

matrix of order (n+2) and dividing the elements of the residual
square matrix by x2.
Let us now reverse the procedure. Assume that the elements

of the matrix [Zik] are known and that the elements of the
4,4
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matrix [Z.RJ are to be found. All the elements of the matrix
6, 6
[Zik] in the area of the five Columns 0 to 4 and the five Rows 0
6,86

to 4 are known immediately, since we have only to multiply the

corresponding elements of the matrix [Zik] by x2:

4,4

2 2 2 2 2
X (Z ) x(Z.,) xNZ.,) x(Z.,) x{(Z. ) Z_ _Z
004 014 024 034 044 05 706

2 2 2 2 2
x(Z.)) xN(Z,,) xN(Z,,) x(Z.,,) x(Z,,) Z,.. Z
104 114 124 134 144 15 716

2 2 2 2 2
XN(Zon) x(Zg,) xH(Z54) X (Z,,) X (Z,,) Z,. Z
204 214 224 234 244 25 726 N

2 2 2 2 2 ‘
xNZ,,) x(Z,,) x(Z,,) x(Z,,) x(Z,,) Z.,. Z.,.
304 314 324 334 344 35 7386

) xz(Z

2
A ) x(Z44) Z

9
x2(Z4O) x(Z
4 4

4
4 )

2
41 42)4 x (Zy3 45 %45

Z Z

53 Zgy Zg5 Zsg
Zs0 Zg1 Zgg  Zgs Zeg Zgs Lgg

Zs0 Zgy 52

To find the elements in Rows 5 and 6 and Columns 5 and 6, we
apply the rules of the diagonal and of the column structure of the

matrix F‘ik} . From statement (3. 12) we know that
6,6

2
(z..) =-(2_,) [x=-(Z,,) - x=-xy(y -2x),
156 046 044

and that
2
(Z26)6 = -(Z15)6/X = y(,’)’ - 2X) .

Furthermore, since

9
(2,.) =-(Z_ ) [/x=-(Z_,) x =-x(y" - x),
256 146 144
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all the elements in Row 2 of the Matrix [Zik] are now known.
6,6
Proceeding in the same way, we find all the other elements in

Rows 3, 4, 5, and 6 of Columns 5 and 6. For instance,

2 2
(Z,.) =(Z,,) /x" =(Z,,) =y -X.
366 146 144

To find elements Z,., Z., and Z, we apply statement (3, 13):

(Zoo) =WZ..) - x(Z,.)
05’ 15% 257
= _xyZ(y2_2x) + x2(y2-x) = - x(x2-3xy2+y4),
(Z,2) =¥Z,.) -x(Z,.)
16% 26' 367
2
= yAy?-2x) - x(y°-x) = x2-3y°+y?,
(Z

)
06°, =y(Z,.) -=x(Z,.)
6 16 6 26 6

= y(x2-3xy2+y4) - xy(y2—2x) = y(3x2—4xy2+y4).
All the elements in Columns 5 and 6 are now known. We obtain

the rest from statement (3. 11) and thus complete the matrix
[ZikJ . A check shows that our results agree with the coefficients
6,6

in Table 2.
As another example we now derive the matrix [Zik} from
1 4,4
the matrix {Zik] without repeating the explanation.
2,2
F 2z ) xXZ.,) xAZ..) Z z |
X %00 o1’ * Y4o2 03 04
2 2 2
xXZ. ) xXZ.) x%z.,.)) z z
10 11 12 13 14
2 2 2
Xz(zzo) Xz(zzl) xz(zzz) Zgz Zgy|-* [Zk]
2 2 2 1% 4, 4.
Z30 Z3q Z3g Zgs L3y
| Z 4o Zy Zyo Zyz  Zyy
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(Z

13), = ~(Zg) Ix

-(Z,,) x=-xy.
4 4 02

n
<

(Z,,) =-(2,5) /x
24, 137,

(Z,,) _ _ -
234 = -(Z12)4/x —-(Z12)2 X =-X-
(Z,,) =-(Z,,) /x=+ 1.

344 234

2
(Z,,) =¥HZ,,) -x(Z,,) =-x(y -x).
034 134 234

2
(z.,) =vz,,) -xZ,,) = - X,
14, y(244 34’ y °X

2
(Zz.,) =yZ,,) ~x(Z,,) = -2x).
04’, ¥ 14, 24, yy~-2x

The results agree with Table 2, which lists the results obtained
through fundamental theorems,
We have thus shown, at least for the order sequence 2, 4, and 6,

that the Z matrix of order n can be derived from the Z matrix of
order n-2,

5. THE GENERAL PROGRESSIVE EVOLUTION OF THE
Z MATRICES

The fundamental theorems for deriving the matrices [Z.k]
4,4
and [Zik] can also be used to derive Z matrices of higher
6,6

order than 6, The higher the order, however, the more tedious
the procedure becomes., It is much simpler to derive the Z matrices
progressively, as in Sec, 4,where the matrix of order 6 was
derived from that of order 4, and the matrix of order 4 from that
of order 2, That the Z matrices through order 6 are consistently

interrelated warrants the induction 4,5

that we can derive the
Z matrix of order 8 from that of order 6, the Z matrix of order 10

from that of order 8 and so on. This has not been taken for granted,
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however, and the results for all Z matrices through order 12 have
been painstakingly proved step by step. No attempt has been made
to find a general proof.

The step-by-step proof is relatively easy. The polynomial

n/2
f(z) = i‘l; (22+yvz+xv) (5. 1)

is first replaced by the polynomial

£(2) = (22 + yz + )" 2, (5.2)
Equations (2. 2) then change to the following:
A =1 \
n
_ (n/
Anp= ()
n/2 /2
P )¥* + ()
r (5.3)

A

o (7 (3 (1),

o (2% ({3 (270 2 (04

A

In the transformation of Eqgs. (2. 2) to Eqgs. (5. 3) the previous com-
binations of x, and y, are transformed to powers of x and y multiplied
by binomial coefficients. By Egs. (5.3) we can prove that if any
row in the Z matrix of order n yields a consistent equation [as for
instance Eqs. (3.5a) through (3. 5¢)] the row in the Z matrix of
order n+ 2 will also yield a consistent equation, and vice versa.
Both matrices can be developed progressively or retrogressively,
as described in Sec. 4.

It is of course easier to use the retrogressive procedure, which
yields the Z matrix of order n-2 from that of order n after the
last two rows and columns are deleted and the residual elements

divided by xz. When a certain order is expected to be the limit
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for practical applications, it is sufficient to present only one row
or one column of the limiting Z matrix. This will yield all the
elements of the matrix, as well as all the elements of the Z
matrices of lower order. Table 3 presents the elements of Row 0
of the Z matrix of order 12, All the elements of the Z matrices
of orders 2 through 12 can be found from this table retrogressively.
The Z matrix of any order higher than 12 can be found progressively.
The results are consistent. They have been proved up through
order 12 and there is nothing to indicate that at the higher orders
there can be any disturbance either in the Z matrix itself or in its
interrelationship with its neighbors. In Sec. 6 we therefore
venture to state some theorems about the structure of the Z matrix

and its relationship between adjacent matrices.

6. THE Z MATRIX THEOREMS

Theorem 1
With An =z 1, given that
n

(z) = > A zK 2 )
zZ) = Z7 = z +y z+Xx
k=0 K JII vV

is a polynomial with real coefficients Ak and of even order. Com-
parisons of its coefficients in the sum-and-product form will yield

a system of n+1 equations:
z.J . [A ] = 0,
[ ik nn n-k n

The elements of the square matrix [Zik] are simultaneous
n,n
polynomials in x and y. The pair x, y stands for any pair XY,

The matrix is called the Z matrix.
Theorem 2

The elements Zii in the main diagonal of the Z matrix are zero.
The other elements of the matrix are partly symmetric, partly
skew symmetric, according to

. itk
Zie =" Ly G
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Theorem 3

In the diagonal direction of the Z matrix,

Zik = 7 L1y k-1)/ %

T'heorem 4

In the column direction of the Z matrix,

Zix = Y2(141)K *2(i+ 2)k*
Theorem 5

From Theorems 2, 3, and 4, the elements of the Z matrix are
known if the elements of any row or of any column in the matrix

are known,
Theorem 6

The Z matrix of order n-2 can be retrogressively derived
from the Z matrix of order n by deleting the last two rows and
columns in the matrix array of order n and dividing the residual

elements by xz.
Theorem 7

The Z matrix of order n+2 can be progressively constructed
from the Z matrix of order n by multiplying the elements in the
matrix array of order n by x2 and applying theorems 3 and 4 to derive

the elements in the additional two rows and columns.

From these theorems it is evident that when the elements of an
nxXn Z matrix are known, then the elements of all lower even-order
Z matrices are immediately available, For example, the elements
in the square area marked by 222... Z2n and 222‘“ an in the nxn
matrix are exactly the same as those in the square area marked

. - - . &
by ZOO“‘ZO(n-z) and ZOO"‘ Z(n-Z)O in the (n-2) x (n-2) matrix.

*The author is obliged to John Ramsey, Lt, USAF, who
noticed this identification during a diligent reading of the first
draft of this report.
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Likewise, the elements in the square area marked by Z44... Z4n

and Z44“'Zn4 in the nxn matrix are exactly the same as those in
the square area marked by Zg,... ZZ(n-2) and Z22"'Z(n—2)2 in the
(n-2)X (n-2) matrix, as well as those in the square area marked

. —AVX (ne s
by ZOO"’ZO(n—4) and ZOO"'Z(n—4)0 in the (n-4)X (n-4) matrix,
Obviously, this congruence provides a more convenient method

than dividing the proper elements by x2 or x4 and so on.

7. REARRANGEMENT OF EQUATIONS DERIVED FROM COEFFICIENT
COMPARISONS

7.1 Two Rearrangements of the Y Matrix Equations Derived From
Comparing Coeificients

In Sec. 3.1 we compared coefficients and derived a system of

n+1 equations in which the real coefficients AO’ cees An had the
leading role. We can rearrange these equations so that either the
unknown x or the unknown y has the leading role. We prefer

to choose x for the part. As an example, let us rewrite Eqgs. (3. 5a)
through (3. 5e):

3 3

xAy ~x2(yA tAL) + x(yA +2yA ) - yA,20 (7.1a)
3 2 - v2A -
x> -x’A, + x(yA +Ag) y°A 420, (7. 1b)
x*(y-Ay) + XA - yA, 0. (7. 1c)
2 + x(yz—yA3+A2) - Ay =0, (7.1d)
2
- x(2y-Ay) (37 -y AgtyA;A) 20 (7. le)

Except for formal multiplication by -1, Eqgs. (7. 1a) through
(7.1e) are the same as Egs. (3.5a) through (3.5¢e). In matrix form they

4-x [ ] 4-K
Y.. x =1Y. x =0, (7.1)
[ ik }4,4 ikl g, 4 [ ]4

Equation (7. 1) contains the Y matrix. This is a square matrix with
5X5 elements Yi

are written

K These elements are polynomials in y only.
The coefficients of these Yik polynomials are the original coefficients

A_,...,A . and thus real.

0 4
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If, instead of x, we had chosen the unknown y, the equation

would have contained the X matrix, written

4-k 4-x
Xy ] = X, } . b }
[ ik 4,4 t kg, 4 4

A counterpart of Eq. (7.1) for the Y matrix, its development is
therefore alternative and will be omitted.

0. (7.2)

1

7.2 Structure of the Y Matrix

Since the theorems presented in Sec. 6 enable us to find the

Z matrix of any order it may seem superfluous to devote more
than casual attention to the Y matrix. The Y matrix, as we have
seen, results only from rewriting equations already known. Its
structure, however, is such that its characteristic properties enable
us fo find all the elements for any order without reference to any
of its adjacent matrices. Because it deals with polynomials in
only one unknown, Yy, it is also more amenable to solution than the
Z matrix with its simultaneous polynomials in x and y.

The Y matrix of order 4, our first example showing the pro-
perties of its structure, has the extended form:

-

Yon Yo Y

00 "01 "02
Y., Y

Y., Y

03 "04

12 Y3 Y4

Y
24 = [Y. ] (7.3)
ik 4,4
34

10 "11

Yo, Y

20 Y21 Yoo Yo3

Y

30 31 "32 733

40 Y41 Y42 Y43 Yyqe

Y
Y
Yo Y
Yo Y

From Egs. (7.1a) through (7. 1e), (7.1), and (7.3), we see that the
following elements of the Y matrix are = 0.

Yoo = Yyp = Yoo = Y30 =Yy 20
Y21 = Y31 = Y41 =0 B (7.4)
Y =0

42




Examining the Y matrix of any order, we find that, in general,
)

YiO = (0 <i<n)
= 9
Y = (2<ign)
Yo z (4<i<n (7.5)
Yn(n/2) =0 J
Let us now take a closer look at the elements in the main
diagonal, In the matrix F ] they are:
ik
4,4
Y00 = 0, as we know from Eq. (7. 4).
Y11 = A4 =1, Also, Y11 = yYOO + A4.
Y22 =y - A3. Also, Y22 = lel - A3.
2 —
Ya3 =y - yA3 + A2‘ Also, Yqq = ¥Y¥gq t+ A2,
_ .32 _ _ _
Y44—y yA3+yA2 Al' Also, Y44-yY33 Al'
We see that in the Y matrix of any order, the elements of the
main diagonal are
- - _qyn-i
Yii 7 Y¥(Go1)-1) T Aner- D0 (7.6)

where 0 i <n. Thus, the elements of the main diagonal of the
Y matrix can be found immediately for any order n by an iterative
procedure,

Let us now consider the elements arranged in the upper
parallel to the main diagonal. This parallel, the co-diagonal,
connects the element Y01 with the element Y34 in the Y matrix

of order 4., Its elements are:

- A

Yg1 =83, Yyg=-Ry Yoz =Ay, Ygu=-A,.

3’ 2 23 1’

We see that in the Y matrix of any order, the elements of the co-
diagonal are the coefficients of the polynomial f(z), those with an

even index being opposite in polarity and those with an odd index
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being the same in polarity, as given by

=+ A (—1)n—i, (7.7)

Yi(i+1) n-i-1

where 0 €£i <n-1, Thus, the elements of the co-diagonal of the
Y matrix are immediately known by the coefficients of the poly-
nomial f(z).

Investigating the structure of the Y matrix in the column direc-
tion, we first consider the area belowthe main diagonal and then
the area above the co-diagonal. Since both areas of the Y matrix
of order 4 are too small to make the structure evident, we will use
the Y matrix of order 6. Its elements are listed in Table 4 and
known, since we know the elements of the Z matrix of order 6.

The elements of the main diagonal of the Y matrix of order 6

are, from Table 4,

— —— 3_ 2 -
YOO.—.O, Y44—y yA5+yA4 A3

~ _ _ .4 3 2 _
Yll-A6—1, Y55—y yA5+y A4 yA3+A2

R _.9_ 4 3 .2 _
Yzz—yAS, Y66~—y yA5+y A4 yA3+yA2 Al

R
Y33 =y yA5+A4 .

From this we see that the formula

—

i-

Y.. =

i"(#"' 1) -1
ii Y An-u( ¥

(7.6a)
0

®
1]

is more practical than Eq. (7.6) for finding the elements in the
main diagonal.

The elements of the co-diagonal of the Y matrix of order 6
are, from Table 4,

Yg1 = A
Yo3 = Ag,
Y5 = Ay,

Yo
Ygu =

Ysg =

it
1
>

1
1
>

This result of course agrees with Eq. (7.7).
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In the area below the main diagonal the elements below and
including YOO’ Y21, Y42, and Y63 are identical with zero, as we
know from Eq. (7.4). The elements still io be determined below
the main diagonal are therefore one each in Columns 2 and 5 and two

each in Columns 3 and 4, as the following array shows.
~

0 \ Y01 _\Yoz Yo3 Yo4 Yos5 Yos

0 Y11\Y12\ Yi3 Y14 Y15 Yig

0 0 Yzz\st _Yaa Yas Yo

0 0 Y5 Y33\\Y34 _Yas Vs

0 0 0 Y3 Yy \~Y45\ Y46

0 0 0 Y53 Y54 Y55 \~Y56\\ co-diagonal

0 0 0 0 Yo Y5 Yeg  main diagonal

The elements not identical with zero in the diagonal imimediately

below the main diagonal are obtained by partial differentiation.

oY

-1, 22 L, 233
Y52="1 3y + Y4371 T3y °
v o1 Tae 1 s
54 1" 9y 65 1 a9y -

The fraction -1/1 is explained when we consider such elements in

the next lower diagonal,

=-1 - __ 1 43
Yyo="2 73y =0, Yg3=-2 5,
Y =_l_a.¥_§é.
64 2 9y °
Finally,
v o -1%s3
63 3 39y

fits in the same structure. It is apparent that the successive
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partial differentiation yields the statements in Eqgs. (7.4) and thus
makes those equations superfluous.

It would of course be premature to draw general conclusions
from the results obtained for order 6 alone. The results obtained
for the Y matrix of orders higher than 6 are, however, consistent
in showing that starting from the element Yii in the main diagonal,

where i=0, \

aY.. Y. . i
B S b -1 __(i+1)
Yiri "1 3y 0 Ya+iTTf oy (7.8)
. C 1% o 1% Gepry
(i+3)i 3 0y * e (ivp) o oy

until the partial differentiation yields zero for p=i. Hence, it can be
stated that once the elements in the main diagonal are known,
all the elements in the area below this partition can be obtained
from Eq. (7. 8).

Before we investigate the area above the co-diagonal, let us
digress for a moment, Table 4 lists the elements Yo 1° "“YOG’

in Row 0 of the Y matrix of order 6. The elements above the

main diagonal in Row 1 are:

12T %9y » Yi3=tz2 %y Y4t 3 oy o
Y =-I-laY—-—0—5 Y =+l8_Y_'9§
15°74 3y + 16775 7y

le being an element of the co-diagonal, The elements above the
main diagonal in Row 2 are:

S Uk T PN L VU S b I
23 1 9y ° 24 2 oy ° 25 " 3 9y °
Y =+L.a.._Y.16_
26 4 9Jy °’

Y23 being an element of the co-diagonal. The elements above the
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main diagonal in Row 3 are:

Y
.1 24 -4 1
Y345%1 %3y » Y3s=*2

oy
Ygyu being an element of the co-diagonal.

The elements above the main diagonal in Row 4 are

N GA.F T T e 13
45 " " 1 9y 46 2 9y
Y45 being an element of the co-diagonal. Element Y56’ above the

main diagonal in Row 5, is the last element in the co~diagonal:

1
Y56—+1———'.

This iterative partial differentiation starting with the elements
in Row 0 will yield the elements above the co-diagonal in the Y
matrix of any order. The elements of the co-diagonal cannot be
thus obtained, but these are already known.

We can also find the elements above the co-diagonal by an
iterative integration, although this procedure leaves the constant
of integration in doubt. To show how it workes we will compile
the results for the Y matrix of order 6. We proceed by starting
with each element in the co-diagonal, going up the columns by
integration.

Since Yg9 = 0, and Y,, is an element of the co-diagonal, the

01

element Y02 is the first that has to be found in the Y matrix of any
order.
Column 2
Yi9=- A4 is an element of the co-diagonal,
Y02 = -yA4 - A3 (see Table 4)
= I/leay— A3.
Column 3

Yoy = A3 is an element of the co-diagonal,
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Y13 = yA3 + A2 (see Table 4)

= 1/Y23 0y + Ay,
Yyq = yAg + 2yA, + A (see Table 4)
= 2jY138y + Al'

Column 4

Y34 =" Ao

Yy, = - yA, - A, = 1fY34ay- A,

Y, = -yA, - 2yA - A" 2]Y24ay - A,

Yy, =-¥A,-3y°A, - 3yA_ = 3fY14ay - 0.
Column 5

Y5 = A,

Y35 = yAl + A0 = lfY458y + AO,

Yo, = yA, + 2yA, =2 [V, 0y + 0,

Y. = yoA, + 3y%A, = 3[Y258y 0,

Y, = y4A1 + 4y3A0 = 4fY15ay + 0,
Column 6

Y. = - A,

Yo = - yAg = 1fY563y -0,

Yoo = - v A, = 2]Y46ay -0,

Yoo = - yA, = 3fY3Say -0,

Yig=- y4Ao = 4IY2633’ -0,

Y4 = - y5A0 - SfYIGay - 0.

The procedure used to achieve these results, which hold for
the Y matrix of any order, is synthesized from the following rules,
The next element in ascending order from the co-diagonal in any

column is obtained from its preceding one by an integration mul-




tiplied by the sequence of integers 1, 2, 3, until Row 0 is reached.
The descending sequence of polynomial coefficients, excluding
the coefficient of the co-diagonal element, provides the constants
of integration. The sequence being exhausted with AO’ the re-
maining constants of integration are taken as zero. The polarity
of the constant of integration is determined by the polarity of the
polynomial coefficient appearing in the co-diagonal: in the odd-
numbered columns; the sign is the same; in the even-numbered
columns, the sign is opposite.

More generally stated, these rules for obtaining all the ele-
ments above the co-diagonal are mathematically expressed in
the iterative procedure of integration given by the following.

_ _qyn-i
Yiti+1) = An-gr)t™Y
is an element of the co-diagonal known from Eq. (7.7). The ele-

ments in Column (i+ 1) with additional integration constants are:
= _\n-1
Yii-1)i+1) = 1 ¥y500 07 + Ay oGO,
_ _qyn-i
Yooty = 2 Yo ayie) 3+ Aggog CDT

_ n-i
Yiioapie1) = 3 Y-+ 1) O + Apojog G170

Y (neie _yn-i
Y21+ 1-n)i+1) - (0t 1)/Y(21+ 9-n)(i+1) 0Y ¥ Ag-1T.
From here on the integration constants are zero.
Yoot 1) = @ Yot 1onye ) 9 + 0

Y(9i-n-1)(i+1) = (O7iF 1)/Y(2i—n)(i+ 1) 9y + 0,

Yo(i+1) © i/Y1(1+ 1) W+ 0.
Here we reach Row 0,

Thus, an element in the area above the co-diagonal is

_ _qyn-i
Y(i-l.t)(i+ 1) ~ “/Y(i—u+ 1)ay * An—i-,.;+ 1( 1)
from Rowi-1(u=1) to Row 2i-n+1(u=n-i-1) inclusive,
and
Yiiu)iv1) = “fY(i-u £1)9y+0
from Row 2(i-1)-n(u=n-i) to Row O(u=i).

25

(7.9a)

(7.9b)




The progressive integration is less complicated than it appears.
The computation is very easy if we start with the last column n in
the Y matrix.

To find the elements in a particular row of the Y matrix we can
of course skip some of the steps in the partial differentiation, as
well as in the integration, and still get any of Eqgs. (7.1). This
bears out the earlier statement that any of Eqgs. (3.6) can be ob-

tained immediately.

8. THE Y MATRIX THEOREMS

Theorem 8

The n+1 equations derived from comparing the coefficients of
a polynomial of even order n with real coefficients can be rearranged
to derive a matrix with elements Yik that are polynomials in one
unknown, y. The matrix is called the Y matrix [Yik]

n,n

Theorem 9

Beginning with the diagonal element Y,, = 0, the elements of

00 ~
the main diagonal of the Y matrix can be obtained iteratively from

B _ _qyn-i
Y =y Yho1yi-1) T AneierCD

Theorem 10

The co-diagonal of the Y matrix is defined as the parallel to
the main diagonal comprising the elements YOl’ Y g5 eees Y(n-l)n'
Its elements are given by

_ _\n-1i
Yiae1) = Ap-i- 0D

Theorem 11

The elements below the main diagonal of the Y matrix can be
obtained by a process of successive partial differentiation from
one element to the next one within each column according to Egs. (7. 8).




Theorem 12
The elements above the co-diagonal of the Y matrix can be ob-

tained by a process of successive integration from one element to

the next one within each column according to Egs. (7.9a) and (7. Sb).

9. A NOTE ABOUT THE APPENDIX

The appendix contains workcheck tabulations of the Z and Y
matrices and their elements for the even orders 2 through 12,
Although the report is complete without them, they are provided
for the reader's convenience in following the practical demonstra-
tions. Comparisons of the matrix elements within a particular
order with those of other orders will disclose many properties
other than those covered by the 12 theorems. The tabulations
2-Y to 12-Y, for instance, show that the elements in the last
column of the Y matrix, except the element in the last row, represent
a geometric progression whose common ratio is y and first term AO.
A1l such additional properties can be elicited as consequences of the

theorems, which are sufficient to obtain the matrix of any order.
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TABLE 1. Comparison of Coefficients of Orders 2, 4, and 6
F ORDER 2 ORDER 4 ORDER 6
Ao X MiXe X XXy
A, Y, ViXa* VX, ViXoX3+ ¥2X X3t yax X2
Al =1 X FXNY, XXt K XFRAITX Yo Y3+ X Y)Yt X 3YiY2
A; Nty WxFR3)+ yAx x4 pxitao) +y, Yoy
Aq - | xl""a"”‘:&"’ Y Y2t N Yat Yoy
A, Ntytys
Ag = |
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TABLE 2. Elements of the Matrix[ZnJn . of Orders 2, 4, and 6

ORDER 2 ORDER 4 ORDER 6 ORDER 4 | ORDER 6
Zn=Z, -x - - x5 Z,,- 2, -x -x3
Ze="25 y x%y xty Z,~-2, y x2y
2™ 23 -x(y?-x) -x}y2-x) zZ,,~ 2, -x{y®-x)
Zoa=-Zo yy*- 2x) Lyly?- 2x) 2, ,=-Z¢, yly®-2x)
2o~ 2, ~x(y*-3xy? +x?) Z,= 24 + xt
Zoe=-Zg0 yly‘-axy? +35) | Z, =7, -xy
Zp= 2y, + x x Zye™ Zgy yi-x
2,y =-Z4 -xy -x3y 2™ Zsy -x
Z.™ 2, y2-x x2(y%-x) Zee=-Zga y
Z,=-Z, ~-xyly®-2x) Zoe™ Zgs +1
2= Zg y*-3xy? 42
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TABLE 3. Elements of Row 0 of the Z Matrix of Order 12
Zoo 0
Zon ™ 2y -x"
Zoo ™"Zy x'Oy
Zys = Zy - xy%~x)
Zoa = ~Z, x8y(y?-2x)
Z,, = Zg - x(y* - 3xy2+x2)
Z,e = ~Zg, Sy(y* - dxy? +35°)
Zy7 = 24 = x3(yS-5xy* +6x2y% ~x°)
Z,o =-Zg x*y(y® -6xy*+10x2y2- 4x°)
Z,, = Zy - x}y8-Txy® +15x2y4-10x3y? +x%)
Zyio =200 x2y® - 8xy® + 21x%y* -20x°y2 +5x%)
Zo, = Z,40 - x(y'0-9xy® +28x%y®-35x>y*+15x*y? -x°)
Zow =Zgo | YUY-10xy®+36x%y5- 56xy* +35x%y? - 6x°)
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TABLE 4. Elements Not Identical With Zero in the Y Matrix of Order §

Yo = Ag

Yoo = ~(yA +Ay

Yo3 = y?A,+2yA,+A,
Yoa= —ylyRA,+3yA +3A,)
Yos = yyA +4Ac)

Yos = ~¥°Aq

Y, =4I

Y2 = -A,

Y3 = yAsz+A,

Yo = —(y2A,+2yA,+A)
Yis = yAyA,+3Ao)

Yie = =y*A,

Yoo ¥-Ag
Yoz= Ay

Yoq= —(yA,t+A|)
Yos = YyA,+2A.)
Y= ~¥Ao

Yao= =1

Y43 = =(2y-As)

Yaq = Y3~ Y?A+yA -A,
Yas = A,

Yae = ~YAp

Yoo = —(3y2-2yA +A,)

Yss = y*=y3As+y?A,- YA +A,
Yse = ~ Ay

Yoo = 3y -As

Yes = —(4y>-3y2As+2yA,~-Aj3)
Yee = Yo-yAs+y A —y2A +yA,-A,
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APPENDIX

Polynomial, Z-Matrix, and Y- Matrix

Tabulation

Tabulation

Order 2
Order 4
Order 6
Order 8
Order 10
Order 12
2-Z

4-Z
6-Z

8-Z
10-Z
12-Z
2-Y
4-Y
6-Y
8-Y
10-Y
12-Y

47, 48
34
36
38
41

44, 45

49-51
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ORDER 2

Polynomial f(z) =z2+A,z +A,

Z-Matrix (elements see TABULATION 2-2Z)

200 Z01 %02
210 %31 42

2,0 2y 2
20 “21 %22
-

Y- Matrix (elements see TABULATION 2-Y)
Yoo Yo Yoz |

0 Y5 Yo

o o 71,
e -
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TABULATION 2-Z

TABULATION 2-Y

ROW |

T =+1

--Ao




ORDER 4

Polynomial f(z) =2 +A,z3+--- +A z +A

Z- Matrix (elements see TABULATION 4-2)

200 20
210 13
20 Zn

Z Z

30 31

Z

20 2

Y-Matrix (elements see TABULATION 4-Y)

Yoo Yo1 Yoz
I 4
o o

0 0

0
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TABULATION 4-Z




ORDER_6

Polynomial f(z)=26+A 2> +- - +Az +A,
Z-Matrix (elements see TABULATION 6-2)

| 230 Z3n 232 %33 I L5 DB
Zoo 2 Z2 L3 G, s e
Zso 257 Zsp Zs3 Zs, %55 Zse

Y- Matrix (elements see TABULATION 6-Y)

Yoo Yo1 Yoz Yo3 Yo, Yos Yoe

0 Y, Y, Y3 Yy, Y5 Yie
0 0 Y, Yp3 Yy, Y5 Yz
0 0

37
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TABULATION 6-Z

gow o ROW 1
Iy = Zhy = <0
" ) = ¥y "
2oz * - %20 X7 o
zl’ - - 231 s =Xy
2z - 2 - o J( 2 - x)
03 30 y -z 2,.2
2, - Z, =x (y° - x)
2y = =2, = xyly? - 2x)
04 40 2
2, =25 = -0y - =)
ZO’ 250 x(x Ixy© o ’h) tlé - 261 - xz - 3‘,2 * 1‘
zo6 - ’260 -y(’xz-mzoyﬂ
ROW 2 ROW 3
z - z - o x’
23 32 - - x2
- 23 By v x

Za * "L XY

2
z - 3 - - w{y® - x)
25 52 - ay? .
) 3% 2 =V - %
T = =2 =¥y - =
ROW 4 Row 8
2 - 2 ®ax
45 54
z z Zsg = gy "1
W6 ° g, "7
——
TABULATION 6-Y
ROW O ROW |
Y -0
o0 !11 - e}
Ty =45
Tiz = -4,
Yo, = = (YA, + Ay)
02 3 3
N3 = YAyt A
103 - y2A3 * 2yA2 +* Al 2
, Yy, == (yAy ¢ 27Ap + AQ)
Yo, = =Y(y°Ay ¢ Ay ¢ 3Ag) 2
> Yy5 = Y°(yAy + 3Ag)
105 - (yA1 + bAg,
. ok
Y A Be 777
06 "~ - 0
ROW 2 ROW 3
Ty = A Y, =-1

Ay
!Zk == (yr, + Al)

!23

Yas = 7(yA; « 24g)

T = - Phg
ROW 4
Yy = - (27 - A Y53
Y, =P g e - A Tsb
Y Tss
Y = Yho Ts6

ROW 6
Y“ - 3y - As

2
Y5 - - by’ - 3y Ay + 2¥A, - A4)

2
NPTV =T
Ty =42
T3s = ¥h % ho
Y, = -y
36 Yo

ROW 8
=+ 1

- (3¥° - 2yAg ¢ A,)
.y"-y’A5¢y2A,‘-yA3¢A2

--Ao

Y ® yS - ,-'ms . y3A"-JzA3 YA Ay

M —




Polynomial f(z)=2z8+A z7+---
Z-Matrix

Y~ Matrix
(elements see TABULATION

_

Yoo Yo1 Yoz Yoz
0 Y Y Y,
0 0 T, Y

0 0 132 Y33

(elements -3e TABULATION 8-Z)

ORDER 8

+A|z +A°




40

L

267 -
26‘ -

TABULATION 8-2Z

- x0y
- -2(y? - x)
= xty(y? - 2x)
. ~2(x? - 3y + ¥*)

- Xy(3x® - axy? + M

- ..x(y6 - Sxy" o 6x%° - )

- y(y5 - 6xy* + 10232 - 1)

BROW 2
-ex

- xby .

" - g’(’z = x)
- Xy(y? - 2x)

- -x(xz - Bxyz . y‘)

- y(3x2 - bxy? + Y*)
BOW 4
-
L] 12’
- x(y? - x)
- y(y? - 2x)

BOW 6

Z6 " -x
- 2‘6 =y

ROW |

xl‘(yz - Xx)
-Syly? - 2x)
x%(x? - Bxyz * y")
“xy(3x? « 4xy? + y4)

0 - syt . ey -

ROW 3

- - Xy
= x%(y? = x)
- xyly? - 2x)

= x® - 30? e g

ROW S




4]

TABULATION 8-Y

ROW O ROW |
-Q
I =1l
- ‘7
Y., =-A
- - rag + Asg) 12 6
Y = yAo ¢ A
- y2h, s 2yh, o A 13 5% A
5 b 3 'Uq - - (’2A’. * 2,A) * AZ)
.- (’hl. * 3’2A3 * 3"2 * Al) 2
2 s = Phy e 3%, 37y ¢ A
= y(PPA; « by%h, ¢ 6yAy ¢ bhg) . 2
T = =Y (y“A, + 4yA; + BA)
- ’3(y2A2 o SyAy + 10Ag) 16 2 1 0
s " Y, = YAy s SAg)
= y'(yAy *
P e = -7
» - ’7A°
ROW 2 ROW 3
T =74 Y, =-1
- 2
T3 =4 Ty3 =Y =Yyt A
Yo, == (7A, +A5) Ty, == A,
2
Yos = YAy ¢ 27A; ¢ Ay Y35 = YAy * Ay
2
Y == Y(Y“hy + 3yhy ¢ JAO} 136 - - "2‘2 o 2pap Ag)
r27 - ’J‘Y‘l * Mo) 137 = ’2("1 +3 AO)
T = -7k Y3 = - Y
ROW ¢ ROW S
!‘3--(27-&,) !”.,1
Y - y3 - yzA * yA, = A 2
bk 7 6 5 !5‘. - - {3y° - 2"7 * A6)
- 2
Ts = A R T RS L VRR VRYW
Yw . - (yAz * Al) Y§6 = - Az
!l.7 - y(yA1 + 2Ag) !57 = YAy ¢+ Ag
2
Ts = - Pho Tse = - Yhg
ROW € ROW 7
=3 -\ Yy =1
-~ (u’ - 3y2A7 + 2yAg - As) Y95 = 672 - JyA., * A
- ,5 - ,l’A-’ hd ’3A6 - ’2A5 + YA‘. - A3 !76 s - (Syl' - ‘,3A7 . 3’2A6 - 21‘5 . A‘.)
- A p O -16-15A7¢y‘A6-73A50y2A,'-7A3oAz
- - ’AO Yn - o Ao
ROW 8
185 =« (by - A‘,’

“l‘
(-3
[ ]

7

g
[ 3
-3

L}

10 - 6y%h, « IyAg - Ag
- (655 - sy*hy « WPag - 3%g e A, - Ay)

Yy - ¥6l7 . '5‘6 - y"l, . yJA,. - yzla * YAy = Ay
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ORDER 10

Polynomial (z) =z'0+A_z% +---- +Az +Aj

Z—Matrix (elements see TABULATION

290
40
220

230

Zg0

Y- Matrix (elements ses TABULATION

o o © o

(<]

o © o o o

292

294,

Yo,

T

10-2)

Z96

10-Y)
Yo Yo7
e Ti7
Y26 Y27
e Ty
e e
se Y57
o6 Y67
Y76 Y
g6 Tg7
To¢ Yo7

Taoye Y0)7

28 209 %0010
218 219 21010
28 Z9 22(10)
23 %33 Hao)
Zie ZLy 4o
258 Z59  Z500)
Zea 29  Z6020)
22 %9 Z020)
Zgg Zg9 Zg(10)

Z9g 299 29(10)

Yog Yoo  Yo10)
e TNy TNiqo)
s Yo T2020)
3¢ Y33 Y300
e T o)
Ysg Y9 ¥sao)
Tes Yoo Yerr0)
s Y9 Y7020
Tgg a9 Yg(10)

Yos  Yo9  Y9(10)

Y(10)8 Y(0;9 Y(10)(10)

Zaojo Zaon 2002 2oz faonm 2a0)s Znoe Z10)7 2o Znoye Z(10)(10)

o

-
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TABULATION (0-Z
ROW O ROW |
- 9
Zgg * ¥y "%
- x® s
zoz ” - 220 xy 112 - 121 - x
7
Zoy = %0 * x"(y? - x) Zjy ~ =2y =-xY
62 - - 2B(y? -
Zog * < ‘50 e xy(y* - 2x) zu zu x :’2 : x)
205 - zso - -!5(12 - ’t’z . ") 7.15 » - 851 - -x’yly* - 2x)
2 2
20 ~ - Zeo = Xv0x% - bt e vM) 2, *  Zgy = X0 o3P ey
2
Zgy * Zyo * -x’(yb - xyl' . 6:2y2 - x’) 33y = - z.n - _!3’(3,2 - hxy® » 1"
2,6 2.2
Zog * - %80 - x3y(y® - 6yt + 10x%? W) 2,4 - zn-x(y-sxy"oéar-x’)
2.2
Zog * 290 " -!(’8 - 7xy6 * 1§xzyl’ - leJyl . xb) Zjg = - 291 - -xy(y6 - 6!1" + 10x°y" - wx?)
8 gn® s 2, g . o8 2. 1salyh - 100y ¢ 2*
:0(10) - '30(10) = y(y -~ 6xy + zlxzy - 29*31 + 5x°) Z3(10) z(lO)l y Ixy” + 15x ". y
ROW 2 ROW 3
7
4 - z - .x
23 32 . 23‘. - Z,J . 26
Zn " Y, X7 Zax = = Zeq = = XY
2, = St - ) » T
Z - - o - X
25 52 ’2 236 = g - biy? - x)
226 - .262 -x”y(y - 2x) . . .z --‘3"’2-&,
2 2 & 37 73
Iy = Iy m-PE-amtesh 2y = Tgy = 220F -omf e b
3
. v z. = xPr(3x® - axy? )
Zos 42 !(:x Axy© ¢ :‘-2 1y - -2y - i3 -t o o)
2 - 292 - -x(y -5xy"06xy - 23)
® - 2 -6-517"o6xzyz-x’)
.-z = y(y® - bxy* + 10x%? - 1) 23010) (03 "7
Z2(10) " “Zpoy2 =YY
ROW 4 ROW 5
]
Zis v By ovex .
Ze = - Ze - xby Zsg = Zgs *
2y = g = OO x) Zg = - 2g5 = XY
%7 T 22
Zg * - Zg = x7(y? - 2x) Igg = Zgs "Xy -x
W8 8l )
g = I = oxtC -0 e b Zg = =95 T ':’(, -:x)y"
2 2 & Z - Z = x° o 3xy* ¢
z‘(lo) - -Z(lou = y(Ix° - uxy© + y*) 5(10) {10)5

%7 = T " F
Z¢g = -z“ = x°y

ROW 6

3
2,

Zgg = Zg9g = -xly’ - x)

2
Zg(10) = -Z(10)6 = YY" - 2x)

ROW 8

Tyt ge "

Zg(20) " “%10)8 "7

278

g = -2y "W

2
%(10) " Zo)7 Y ~ X

ROW 9

%9100 " %(a0)9 " *?
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TABULATION 10-Y
R0wW O ROW |
Yw -0
Toa ~ 49 T =1
Top = = (YAg + Ag) Y12 = - Mg
Yo3 * ’2A7 + 2yhg * AS T, - Ay + Ag

Yo, * - (Pag + 3y2A5 + 37A, + Ay)
- yhgs - ky’AL * 612A3 * hyAy ¢ Ay
Yoo = -T(YA, ¢ 595 10y%A, + 10yA) + 5Aq)

Ty = YAy 6y%h, ¢ 157A) + 20Ag)

Ty, - -(y2A6 ¢ 27Ag ¢ A)
Yy 2 Ay + A
'15 - A,*JYM"3!3 2
e -(y"‘h . Ly’A, . 6y2A2 * byh; ¢ Ap)

!17 - yz(,JA3 IS 5y2A2 - 10]‘1 . 10‘0)

Yog = -y’(y“’h2 + TyAy ¢ 21Ag) Y8 * -y"(y:"A2 + 6yAy + 1544)
!m - 7("1 * “o’ !19 - yﬁ( ”1 * 7‘0)
9 - o
Toa0) = = Tho N1010) g
ROW 2 ROW 3
122 "-A9 !’2 LI |
2
Ty = Ay Y33 =Y = 7YAg * Ag
!2‘ - - (yA6 * As) Y3‘. - . A6
2
125 -y‘5¢2yA‘0A3 Y” -yA,oA,.

2
T = - (yJA‘. + 357y ¢ 37A, ¢ Ay) R "2‘1. o2y ay)

4
W
(-

]

Yy, = y(y3A3 * AyzAz + 6yAy + bAg) Y

’28 » o y’(yzAz + 5,‘1 * lmo)

37 = Phy + 357, ¢ 3yA; ¢ Ag

- yz(yzA2 + byAy + 6Ag)

~
w
[-%

[ ]

Yo = PUyh) * 64g) Ty = YH(rA) + SA)
2000 "= Y'ho Ta0) = -7
ROW 4 ROW 5
T3 = - (27 =) T3 =1
'u."""z“;*"a'h Ysh'-(372-2ﬂ90A8)
T5 = As T =yt - y3A9 + ¥y - YA, + Ag
Tog = = (7h, + 43) Tse = =4

)
Typg “YA3+ v A s, = YAy ¢ A,
- 7ty + 37A) ¢ 2g)

o
- 3
L]

Y58 - - (y2A2 - 2yA1 . Ao)

r59 - yz"ll - 3‘0)
R
Twt10) 7o T50) " - T*o




TABULATION 10-Y

8OW 6
Yo, = 3¥ =~ Ag

Yos = - 6y - 3¥°hg v 27Ag - Ap)
'66 -

Yo7 = A3

Yea = - (yAy + &)

Yoo ° yiyAy + 285)

Yg(10) " - rg

y5 - ybkg . y3A8 - y2A7 * Yhg - As

ROW 7
Y, =-1

Y75 = 6y2 - 3yA9 + Ag

Yoe = = (57* = 4rhg + 3¥°Ag - 27Ay + Ag)

I © v® - Phg g - Phy o Yohg = yhs o 4,
Tg = -4A

Tyt0) =Y

Y85

Yg6

ROW 8
= - (by - Rg)
- 10y° - 6y2A9 + 3yhg ~ Ay

= - (6y° - 5y'ag + uyag - 3%, + 2yAg - Ag)

= y7 - y6A9 + y5A
-Al
-_on
ROW 9
+ 1

Yoo = - (10y° - 4yhg + Ag)

Y9(10) *

155% - 105°Ag + 6y%Ag = 3¥A, ¢ Ag

L 2
g = Ty ¢ Phe - Y5 ¢ A, - Ay

- (795 - 6y°hg ¢ sytag - LAy + 3G - 2yAg e A,

8 7

- yag . g = Ay o vy - Pag e v, - YAy + Ay

- Ag
ROW 10

Y10)6 = 57 = Ay

T(10)7

(20y° - 10y2A9 + Lyhg = Aq)

- 2195 L 2
Y(10)a = 2% - 15v%Ag + 10y°A4 - 69%A, + 3yAg - Ag

Y(10)9

o9
Y(10)(20) = ¥

8y’ - 78

- ¥+ ¥Thg - ¥y + ¥Pag

- y"As .y

Ag + 657hg = YA, + 4PAg - 3yPA5 o 2yA, - Ay)

2
b - YRy e TRy - Ay
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ORDER 2

Polynomial flz) = 2°+ A2+ A,oz'°+ oA ZHA
2~ Matrix (elements see TABULATION 12-2)

Zo0 0 Zo2 Zo3 g, Zgs Z06 iy Zog 209 L0 fonn %2
20 LT % 413 %14 s 26 4, 218 )9 Zi0 A B
20 a 222 23 22 2z 226 LY 2 Z29 20 Zann %y
30 G 2, 233 BT 235 23 23 238 239 Zyo FHBm Ly
4o Za Z42 243 2 Zs Zi6 27 2.8 249 %o Her Bz
Z50 Z5 5, Zs3 Zs4, Zss 256 259 Zss 59 Zoo  Zsi Zsag
Zs0 6 Zs2 26y Zgy, Zgs Zgs Zeg Zes Zg9 Ze110 26t o2
230 n 272 273 22 225 22 in Z78 279 90 Hru Hae
Zg0 Zgy s, ) Zg, Zgs Zg6 Zay Zgg Zg9 Zg010  %gr1 g2
Z90 Zg) Z92 Z93 Zg,, 295 296 297 Z98 299 290 9 %9n2
Zoro 2o ez For3 Rov, Aors e Zorr G Boe fwoie Rorm Zione
Q0 Zua A2 Zaes Znw, Zuaes Zise Zvr Y A Znie Zuun g -
L_ L1200 Z12n Dizea Z2v3 Zowy Y1205 Ziaee D1z Yvg Zi2ig Zl2vo Z2en Y212

Y -Matrix (elements see TABULATION [2-Y)

Too Tn Y02 o3 Yo4 Tos Tos Yo7 Yoa Yoo Yoo Tow Yoz
o 1 12 13 T s T16 Ty 18 Ti9 Lo YN N2
0 e Y22 Y23 T Y25 Y26 T2 Ya3 T2 Yoo Yl Yo
0 0 T3 133 34 I35 36 Iy T3a T39 3o Yar Y32
0 0 o Y3 Tt s Tus Y7 .8 Yo Lao L Yoo
o 0 0 155 s, Y55 Y56 Y59 T5g 59 Y50 Y5 Ysm2
0 0 0 o Yeu Y65 Yoo 167 Tes Yo Yerio  Yerur  Yena
° ° ° 0 7, o5 76 72 Y78 29 a0 YT Y2
o 0 0 0 o Tgs Y6 g7 Tag Tg9 Ygrio  Ygru1  Yaro
4] o ] o] o] Y95 ng Y97 Y98 Y99 Y9'10 Y9,11 !9,12
0 0 o o 0 0 Nioe  Yworp  Tiore  YTiorg Tioao Tiorwn Yroniz
° 0 0 o 0 o e Ty Tire Yrivg Tuie T Yuare
0 e ¢ o ° 0 0 Y1207 Yizeg  Tizeg  Yizno Tazen a2z

b, ——

44J"""'-'lllllllllllllllIIlIlIIllIllIlIIlIIIIlIIIIIlllllIIlIlIIllIllIlIllIlllllIllllllllllllllIllIIIlllllllllllllllllllllllllllllJ




ROW O

2y 2y = et

Zgy = = 339 = X

293 Iy - O(y? - 2)

2 =~ 2o = AW0y? - )

Zos = %50 " tx? < 3m? o M

Zop * = Zgo = Xy03x% - uxy? o oY)

207 = Zyg = 0% - st e xR . )

Zog = - Zgo = Xyty® - 6xy* + 1aPH? - o)

29" 290 " 18 - 78 s 15230 - 106792 o )
Zov10 = ~Zigeo™ XV - 8% o 22t - 200y? o sab)
Zgr = .ot 270 - 9my® o 28:%5 - 35yt ¢ asaty? - 4%
o012 ® ~Zppe0” W70 = 1008 o 36x%0 - s6dyh o saby? - 6ad)

ROW 2
Zy3 * Iyp me X
Zy * -G =X
Zys = gy = ex'ly?-x)
2y = - 2g = vyt - 2m)
2+ gy =0t 20t e yh)
28 = - Zgp = xv0x% - wm? e b
29 * %52 * Pyd - syt e exPy? - )
Zypp = Tyorz = xovly® - 6 ¢ 1032 - ud)
ot G2 t axty® - 7xy® o 15234 < 10237 . 2b)
Zyyz * ~Ziaez = viy® - 8% o 21x¥h - 200992 4 sy
ROW 4
Zg v Zg =%
2 v -2 * X7
Zgy 2y = exMy? e x)
Z,3 ~ -~ 2g, ™ xyly? < 2x)
29 " Zg, * 3 . Iny? + ¥*)
Zya0 Y100y, ¢ *°y(3x% - 1xy? o y*)
ooy e t -xly® « 5xy® o 6x3y? - )
Zye1z T Tyt viy® - 6xy* « 10x%y? - 1)

TABULATION 12-2

now 1
2, = Iy =0
2y = -2y <o
2, By *Y0P-x
2y, » =35 o eaalyty? -2
g+ 2g o xbx? -3md .Y
9 = -8y ° wdp(3n? - axy? o 94
Lig* g - Bvd - osmyt o 6yt - )
2yg = - 1o = 200% - bmt o 103 - )
Zino * Zion = X% - mod . asxih 2 a0y 4 )
Zyqy = <Zpye = oxvly® - 8n® . axdh -y . 5yt
Tz * Tzt V0 - 9t e 28x%0 L asdh 4 aseby? L
now 3
Z,L - g‘, - ,.
2y = 25y -y
Zy = Zgy ° S -0
23 = -2y «xrty? - 22
Z3g = Zgy = xMx’ - g e g
Zyg = = Zgy = -Xy3x% - kmy? o yh)
Zy0 ° Z1on ° 2(y® - st o 6xPy? - )
23011 "~ I3t oxy(y® - 6xy* « 10x%y? - 4x3)
Zyga = Zyzey = 7% - 7P e 1sxPh - londy? o ob
ROW 5
256 he Zgs *® '6
Zgg = -2y = Xy
Zgg = 2g5 = x'y% - @)
Zgg = - 295 = -Xyly? - 2x)
Zio = Zyrs * X0 - 30f . yh)
Zgoyy = ~Zipeg * xr(3x? - axy? e ¥4
25012 = 213 " ¥6 - Sxy® o+ 6xly? - 3




TABULATION 12—Z

ROW 6 ROW 7
29 = g =% .
Z - z - X
o 78 87
28 * - Zge = X7
- 2o = ~X(y° - ¥) Zyg = %97 "~ xJy
269 96 = =X (¥ - > -
Zgrio " <2106 " x%v(y? - 2x) 210 = Yoy X7 - x)
2
Zgr11 "= Znive T x(x® = 3xy° + y4) Zy0yy = <%0 = =xy(¥ - 2x)

Zoryy = Fags - YO - b0F e ) Ty, = Zipg =P -0t v

ROW 8 ROW 9
289 = 298 - 13
- 2 - 2
28'10 - -210'8 xy 29.10 bt 210'9 x
2
Zgeyy = Z1108 " -x(y® = x) Zg11; " %3319 "= XY
- 2 - 2
2g112 = <-Zy2ig = VYT - 2x) Zgiyp = Zyzg "V - X

ROW 10 ROW |1

210011 2193110 = - X

Zygr1z * - Zyanno "7 213112 Zyp11y; = *1




49-51

Yono
Yo

Y0112

123
Yo,
Y25
Y26

Yoy

Y29
Ta110
Yo

Yar12

Y3

Y5
Y6

Tie
Y9
Tyr10
Y

Y112

TABULATION
ROW O
-0
"M
= =lyAyg *+ Ag)
- y2A9 + 270y ¢ Ay
= ~(hg + 397 Ay ¢ Iyag + Ag)
- g+ s+ 6y%hs « Lyh, <+ Ay
= ~(y°hg ¢ Sy¥A5 + 1078, + 10y%y + 5yA, ¢ A)
- y(y’A5 . 6y‘Ak . 1513A3 + 20y%, + 157A; + 6Ag)
= -2 (y", o 78y o 20y7h, ¢ 357A; « 35K0)
- y5(y3A3 + &y%h, « 28yA) + S60)
o ~y7(y%a, + 9ya; + 36ag)
- Y9(YA1 + 104,)
. oy,
ROW 2
TY-Ay
- Ay
= ~(yA8 +* A7)
- y2A7 . 27hg ¢ Ag
= (g + 3975 ¢ 3yA, + Ay)
=Yg e byPh, v 657y ¢ byhy o Ay
- ~y(yl'A,. - 5y3A3 . IOyZAz + 10yA) + 5Aq)
- y3(y3A3 + 6y%h, « 15yA; + 20a5)
= <r3(r%, + Ay« 20)
- 77(yA7 + 8A5)
.oy
ROW 4
= ~(2y - Apy)
- !3 - !2A11 * YA - A9
-,
= =(yAg * Ag)
=Yg v oA, o Ay
= (78, ¢ 373y + 3yA, + A2
- y(y’A3 * ky2A2 . 6yA1 + LAg)
= P (y%, ¢ sy ¢ 1)
= ¥ (yAy + 6Ag)
. e yThg

2-Y

Tino
Y11

12

Y3110
T3

Y3v12

Y5110
Y501

Y5012

ROW |

+1

- Mo

Thg ¢ Ag

-(r%ag ¢ 27hy 5 Ag)

Phy + 358 ¢ Ik o A,

-(y‘l6 . by’A, . 672Ak * LyA3 + Ay)

Phg + sy*Ak . 10y3A3 + 10920, + 5yhy v A
2y, + 6705 15y%h, + 209A;  1545)
YU s P, e 2 ¢ 35ag)

=5y%, « oya) + 28

3yay + 9ag)

- 1%,

ROW 3
-1

2
=Y =YAp * A

- Ag
YAy ¢ Ag
2
=(r°Ag + 2yhg + &)
y3A5 + 3y2Ak + 3yA3 + Ay

-(;’"A‘. - LY’A; - 6y2A2 - I.yAl - AO)

= ¥2(°Ay + 5%, + 10yA; + 10Ag)

-y (y%h, « byAp + 150,)
Yoy + Myl
-yBAo

ROW 5
+ 1
-(3y° - 2yA; + Ayq)
Y - Pagy s vy, - YAg ¢ Ag
- Ag
Yhs + A,
(5%, + 27Ay ¢ Ay)
Phy + 3%, + 37A) g
-yz(yzA2 ¢ by o 6A°)
Yo (rAy « saq)

- ¥or




TABULATION 12—-Y

ROW 6

Te =3y - Ay
Y5 = -(6y? = 37y ¢ 2yAjg = Ag)
Yoo = y5 - ’“‘11 . y3A10 - y2A9 * YAg - A7
Yo7 = As
Tog = =(yh, * A3)
Teg = Yhy + 27hy + Ay
Y6110 - -y(12A2 + 3yA; + 3Ag)
Yy = Plyhy + tog)
Tei2 = - Yo

ROW 7
=1

Tp5 = 6v° - 37Ayy + Ajg
Yog = =(57% < 4yPhy; + 39%h g = 27hg ¢ Ag)
Yoy = 70 = Poay ¢ Py - Phg o PPhg - mhy v ag
Y78 = = A,
Y79 = YAy + A,
Yoo = -(y2A2 + 2yA; + Ag)
Tpryy = Y2(rAy * 3hg)
Y7112 = - Y*Aq

ROW 8
!85 - = (by - All)

Yo = 107 - 6y%Ay; + IyAyg = Ag
Yap = =(6y> = 5Y*AL; + byPhyg = 3¥PAg ¢ 27Ag - Ag)
Yag = y - y6A11 . 75A1° - Y“Ag + 73A3 - 72A7 * Yhg = Ag
Yoo = A
Tgryo = =(vAz + A))
Tgi1y = Y(YAy + 2Ap)
Ta = - Pho




TABULATION 2-Y

ROW 9
Tgg = ¢ 1

Yog = =(10y% ~kyhy) + Ayp)
Tog = (7% = 6y%h); + sy*Arg - 4dhg + 3yPhg = 27a, + k)
- ) 6 5 4 2

Y99 y'yAll"yAlo"YA9'YAe-yab’.yhé-ylsoA'.
Tgrig = - A2
Y9111 = YAy * Ag

2

Yg'lz bR 4 Ao

ROW 10

Yio6 = 57 = A
Tyoep = =(20y° ~ 20y%A)) « Lyhyg - Ag)
Yigrg = 21y° - 15y%Ay, + 0y, - 6y2A9 + 3yAg - A,

Yiorg = (877 = 798y + 630 - syfag + wPhg - 3%, + 2yAg = Ag)

Y0010 Y

% ¥ Ao = 79 ¢ Py - vy ¢ Phg - v e, - Ay

Tiorl = 4

Tion2 = - VAo

T1iv6 =

T1147

Y1108

Ti1v9

Y3110

Y1011

Y1112

ROW Il
-1
15y%
MR L TR T
-(359" - 20y3A11 + 10y2A1° - byhg + Ag)
28y% - 2190, + 15yM g - 2090 + 6yRag - 3y, ¢ Ag
=(97% - 8y7hyy ¢ T - 690hg ¢ SyMAg - 4xPhg ¢ 3yPAg - g+ A)
10

-Ao

ROW 12

Ty209 = =16y = Apy)

Tizeg = 3597 - 157°Ay ¢ SyAjg - A
2
112'9 - -(56y5 - 35y"An + 2013A10 - 10y A9 + Lbyhyg - A-,)
6 5 2
Tyaun0 = 3677 - 28708y, + 21y%A 0 - 15y%ag ¢ 20y%ag = 6¥%h, + yAg - Ag

Yoy = -(20r7 - 9yfay; + &yTay, - 7y6A9 s 6°hg = 57"Ag + bPhg - 3¥Ag ¢ 27A, - Ag)

Yoz = Y - 7%y, Ay, - "‘9 + yAg - ’6‘7 s Phg = YA ¢ Pa, - Ay s vAy - 0y

L Y L S W R L TR R A T TR
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